BIU AI and ML Learning Club – May 19, Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products
CS Bldg 503, Seminar Room 226On May 19, Guy Bar-Shalom from the Technion will give a talk titled: Subgraphormer: Unifying Subgraph GNNs and Graph Transformers via Graph Products Abstract: In the realm of Graph Neural Networks (GNNs), two exciting research directions have recently emerged: Subgraph GNNs and Graph Transformers. We propose an architecture that integrates both approaches, dubbed Subgraphormer, which ... Read more
Prof. Gal Chechik Bar-Ilan University: Learning with visual foundation models for Gen AI
CS Auditorium (Bldg. 503)On May 23, Prof. Gal Chechik Bar-Ilan University will give a lecture on: Learning with visual foundation models for Gen AI Abstract: Between training and inference, lies a growing class of AI problems that involve fast optimization of a pre-trained model for a specific inference task. These are not pure “feed-forward” inference problems applied to ... Read more
BIU AI and ML Learning Club – May 26, Real-to-Sim: Towards interpretable and controllable digital twins (Note the Venue)
חדר ישיבות 329, הנדסהOn May 26, Dr. Or Litany from the Technion will give a talk titled: Real-to-Sim: Towards interpretable and controllable digital twins Abstract: Do we live in a simulation? Perhaps we should consider the possibility. Replicating real-world observations into a digital twin offers numerous potential benefits. For instance, in autonomous navigation, one could recreate safety-critical scenarios ... Read more
BIU AI and ML Learning Club – June 2, Do Stochastic, Feel Noiseless: Stable Optimization via a Double Momentum Mechanism
חדר ישיבות 329, הנדסהOn May 26, Dr. Kfir Levy from the Technion will give a talk titled: Do Stochastic, Feel Noiseless: Stable Optimization via a Double Momentum Mechanism Abstract: The tremendous success of the Machine Learning paradigm heavily relies on the development of powerful optimization methods, and the canonical algorithm for training learning models is SGD (Stochastic Gradient ... Read more
BIU AI and ML Learning Club – June 9, Testing for Dependency of Databases
CS Bldg 503, Seminar Room 226On June 9, Dr. Wasim Huleihel from the Tel Aviv university will give a talk titled: Testing for Dependency of Databases Abstract: In this talk, we investigate the problem of detecting the dependency between two random databases represented as matrices. This is formalized as a hypothesis testing problem, where under the null hypothesis, the two ... Read more
BIU AI and ML Learning Club – June 16, Revealing Latent Hierarchical Structures in High-Dimensional Data Using Hyperbolic Representations
חדר ישיבות 329, הנדסהOn June 16, Dr. Ronen Talmon from the Technion will give a talk titled: Revealing Latent Hierarchical Structures in High-Dimensional Data Using Hyperbolic Representations Abstract: The tremendous success of the Machine Learning paradigm heavily relies on the development of powerful optimization methods, and the canonical algorithm for training learning models is SGD (Stochastic Gradient Descent). ... Read more
BIU AI and ML Learning Club, June 23 – BIU Students research talks
CS Bldg 503, Seminar Room 226On June 23, we will have 4 BIU Students giving the following talks on their research progress. First hour (12:00-13:00) will be dedicated for the students talks Second hour (13:00 - 14:00) for networking. 12:00 - 12:15 Presenter: Osnat Drien Lab Head: Prof. Yael Amsterdamer Title: Query-Guided Resolution in Uncertain Databases Abstract: We present a ... Read more
BIU AI and ML Learning Club, June 30 – What Makes Data Suitable for Deep Learning?
CS Bldg 503, Seminar Room 226On June 30, Dr. Nadav Cohen from the Tel Aviv University will give a talk titled: What Makes Data Suitable for Deep Learning? Abstract: Deep learning is delivering unprecedented performance when applied to various data modalities, yet there are data distributions over which it utterly fails. The question of what makes a data distribution suitable ... Read more
BIU AI and ML Learning Club, July 7 – Local Glivenko-Cantelli (or: estimating the mean in infinite dimensions)
חדר ישיבות 329, הנדסהOn July 7, Prof. Aryeh Kontorovich from the Tel Aviv University will give a talk titled: Local Glivenko-Cantelli (or: estimating the mean in infinite dimensions) Abstract: If μ is a distribution over the d-dimensional Boolean cube {0,1}ᵈ, our goal is to estimate its mean p∈ᵈ based on n iid draws from μ. Specifically, we consider ... Read more
DSAI Dinner 2024, July 10, 2024
Nano Building (206), Auditorium room 051The Bar-Ilan Data Science and AI institute (BIU DSAI) is glad to invite you to its annual dinner event. The event is open to all BIU researchers interested in data science and AI including faculty, postdoctoral fellows and graduate students. This will be an opportunity for us all to meet, learn about recent ... Read more
BIU AI and ML Learning Club, July 7 – Protecting AI From Theft with 2-Party Security
חדר ישיבות 329, הנדסהOn July 14, Dr. Adam Hakim from Microsoft WSSI will give a talk titled: Protecting AI From Theft with 2-Party Security Abstract: Large language models (LLMs) have recently seen widespread adoption, in both academia and industry. As these models grow, they become valuable intellectual property (IP), reflecting enormous investments by their owners. Moreover, the high ... Read more
BIU Learning Club, November 18 – Exploiting Symmetries for Learning in Deep Weight Spaces
חדר ישיבות 329, הנדסהOn November 18, Dr. Haggai Maron from the Technion will give a talk titled: Exploiting Symmetries for Learning in Deep Weight Spaces Abstract: This talk explores the emerging research direction that studies neural network weights as a novel data modality. We'll discuss recent advances in processing and analyzing raw weight matrices, which exhibit inherent symmetries ... Read more
BIU Learning Club, November 25 – Statistical curriculum learning — An elimination algorithm achieving the weak oracle risk
חדר ישיבות 329, הנדסהOn November 25, Dr. Nir Weinberger from the Technion will give a talk titled: Statistical curriculum learning -- An elimination algorithm achieving the weak oracle risk Abstract: Curriculum Learning (CL) is a successful machine learning strategy that improves a learner’s performance by ordering the tasks according to difficulty, similarly to the way humans learn. However, ... Read more
סמינר: בינה מלאכותית יוצרת, מתודולוגיות חדשות במחקר והוראה במדעי האדם
אולם קונצרטים בניין מוזיקה (1005)המכון בשיתוף עם הפקולטה למדעי הרוח מזמינים אותכם לכנס בנושא בינה מלאכותית יוצרת, מתודולוגויות חדשות במחקר והוראה במדעי האדם. הסמינר מיועד לכלל האוניברסטאות, לחברי סגל וסטודנטים לתארים מתקדמים. להרשמה, פיתחו את הקובץ מתחת לפוסטר, וליחצו על הלינק להרשמה. נשמח לראותכם BIURuachAIAd20246